## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# catena-Poly[[(3-methylpyridine)-copper(I)]- $\mu$-cyanido-copper(I)- $\mu$ cyanido] 

Jin-Biao Cai, Ting-Ting Chen, Ze-Ying Xie and Hong Deng*

School of Chemistry and Environment, South China Nomal University, Guangzhou
510006, People's Republic of China
Correspondence e-mail: dh@scnu.edu.cn
Received 16 April 2011; accepted 15 July 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; $R$ factor $=0.042 ; w R$ factor $=0.118$; data-to-parameter ratio $=16.1$.

In the title complex, $\left[\mathrm{Cu}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]_{n}$, there are two copper atoms with different coordination environments. One Cu atom ( Cu 1 ) is linked to the two cyanide ligands, one N atom from a pyridine ring while the other ( Cu 2 ) is coordinated by the two cyanide ligands in a slightly distorted tetrahedral geometry and linked to Cu 1 , forming a triangular coordination environment. The Cu atoms are bridged by bidentate cyanide ligands, forming an infinite $\mathrm{Cu}-\mathrm{CN}$ chain. One cyanide ligand is equally disordered over two sets of sites, exchanging $C$ and N atoms coordinated to both metal atoms. However, one cyanide group is not disordered and it coordinates to Cu 1 via the N atom whereas its C -atom counterpart coordinates Cu 2 . The 3-methylpyridine (3MP) ligand coordinates through the N atom to Cu 1 as a terminal ligand, which originates from decyanation of 3-pyridylacetonitrile under hydrothermal conditions. Adjacent $\mathrm{Cu}-\mathrm{CN}$ chains are interconnected through $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions $[2.8364$ (10) $\AA$ ] , forming a three-dimensional framework.

## Related literature

For applications of coordination polymers, see: Gu \& Xue (2007); Cheng et al. (2007); Ley et al. (2010); Etaiw et al. (2009); Li et al. (2009).


## Experimental

Crystal data
$\left[\mathrm{Cu}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$
$M_{r}=272.27$
Monoclinic, $P 2_{1} / c$
$a=9.3027$ (18) $\AA$
$b=12.090$ (2) $\AA$
$c=8.8738(17) \AA$
$\beta=105.927(2)^{\circ}$

$$
V=959.7(3) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=4.38 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

## Data collection

| Bruker SMART APEX CCD | 4802 measured reflections |
| :--- | :--- |
| $\quad$ diffractometer | 1725 independent reflections |
| Absorption correction: multi-scan | 1396 reflections with $I>2 \sigma(I)$ |
| $\quad(S A D A B S ;$ Bruker, 2004) | $R_{\text {int }}=0.035$ |
| $\quad T_{\min }=0.559, T_{\max }=0.668$ |  |
|  |  |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$ | 2 restraints |
| $w R\left(F^{2}\right)=0.118$ | H -atom parameters constrained |
| $S=1.03$ | $\Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3}$ |
| 1725 reflections | $\Delta \rho_{\min }=-0.77 \mathrm{e} \AA^{-3}$ |
| 107 parameters |  |

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{N} 1-\mathrm{Cu} 1$ | $2.057(2)$ | $\mathrm{C} 9-\mathrm{Cu} 2$ | $1.838(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 7-\mathrm{Cu} 2$ | $1.839(4)$ | $\mathrm{Cu} 1-\mathrm{N} 2$ | $1.891(4)$ |
| $\mathrm{C} 8-\mathrm{Cu} 1$ | $1.886(4)$ |  |  |

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge South China Normal University and the National Natural Science Foundation of China (grant No. 20871048) for supporting this work.

[^0]
## metal-organic compounds

## References

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, J. W., Zheng, S. T., Ma, E. \& Yang, G. Y. (2007). Inorg. Chem. 46, 10534-10538.
Etaiw, S., El-din, H., Amer, S. A. \& El-bendary, M. M. (2009). Polyhedron, 28, 2385-2390.

Gu, X. \& Xue, D. F. (2007). CrystEngComm, 9, 471-477
Ley, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., BrilRobert, F., Li, X. B., Patterson, H. H. \& Pike, R. B. (2010). Chem. Commun. 46, 4565-4567.
Li, Z. Y., Wang, N., Dai, J. W., Yue, S. T. \& Li, Y. L. (2009). CrystEngComm, 11, 2003-2008.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supplementary materials

catena-Poly[[(3-methylpyridine)copper(I)]- $\mu_{\left.\text {-cyanido-copper(I)- }-\mu_{\text {-cyanido }}\right] ~}^{\text {-cy }}$

J.-B. Cai, T.-T. Chen, Z.-Y. Xie and H. Deng

## Comment

Much attention has been focused on the rational design and synthesis of coordination polymers due to their intriguing structural features as well as potential applications in catalysis, fluorscence, and as chemical sensors (Gu et al., 2007; Cheng et al., 2007; Ley et al., 2010; Etaiw et al., 2009). Some polymers with rigid ligands such as isonicotinic acid has been reported (Li et al., 2009). A cyano group is a well bridging ligand, which plays an important role in assembling of polymers acting as a monodentate, bidentate or tridentate ligand (Ley et al., 2010). A careful review of the literature suggests that 3-methylpyridine (3MP) use as a ligand to construct metal coordination framework has not been reported yet. Herein, we report the title complex synthesised by the reaction of cuprous cyanide and 3PAT ligands under hydrothermal conditions. Cu 1 is coordinated by two cyano ligands, one nitrogen atom from pyridine ring and Cu 2 centre with the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.836 (4) $\AA$, forming a slightly distorted tetrahedral coordination. Cu 2 is coordinated by a carbon atom from one cyano ligand, whereas the second coordination sites is occupied either by N or C atoms (due to the disorder of ligand), and Cu 1 centre forming a triangular coordination environment (Fig. 1, Table 1). The adjacent copper-cyano chains are joined through the $\mathrm{Cu} \cdots \mathrm{Cu}$ interaction forming a three dimensional framework. The site occupancy of cyano ligands $\mathrm{C} 9 \equiv \mathrm{~N} 4$ and $\mathrm{C} 8 \equiv \mathrm{~N} 3$ is 0.5 , each.

## Experimental

A mixture of 3-pyridylacetonitrile ( 2 mL ), cuprous cyanide ( $0.092 \mathrm{~g} ; 0.1 \mathrm{mmol}$ ), strong ammonia water ( 2 mL ) and 8 mL water were sealed in a 23 mL teflon reactor, and the mixture was heated at 443 K for 3 d then cooled to room temperature at a rate of $5 \mathrm{~K} / \mathrm{h}$. Yellow crystals were obtained in a yield of $37 \%$ based on Cu .

## Refinement

All H atoms were placed in calculated positions and refined using a Riding model, with ( $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ ), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. Two of the cyano ligands are disordered over two sites with occupancies 0.5:0.5.

## Figures



Fig. 1. The asymmetric unit of the title complex. Non-H atoms are shown as $50 \%$ probability displacement ellipsoids. Two of the cyano ligands $\mathrm{N} 3 /(\mathrm{C} 8)$ and $\mathrm{N} 4 /(\mathrm{C} 9)$ are disordered over two sites with occupancy 0.5 , each.

## supplementary materials

## catena-Poly[[(3-methylpyridine)copper(I)]- $\mu$-cyanido-copper(I)- $\backslash \mu$-cyanido]

## Crystal data

$\left[\mathrm{Cu}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$
$M_{r}=272.27$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.3027$ (18) $\AA$
$b=12.090(2) \AA$
$c=8.8738$ (17) $\AA$
$\beta=105.927(2)^{\circ}$
$V=959.7(3) \AA^{3}$
$Z=4$
$F(000)=536$
$D_{\mathrm{x}}=1.884 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1725 reflections
$\theta=2.3-25.2^{\circ}$
$\mu=4.38 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, yellow
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

1725 independent reflections
1396 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-10 \rightarrow 11$
$k=-13 \rightarrow 14$
$l=-10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0603 P)^{2}+1.271 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.76$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77$ e $\AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.3796(8)$ | $0.8237(6)$ | $-0.1465(8)$ | $0.085(2)$ |  |
| H1A | 0.4815 | 0.8216 | -0.0832 | $0.127^{*}$ |  |
| H1B | 0.3695 | 0.8783 | -0.2273 | $0.127^{*}$ |  |
| H1C | 0.3520 | 0.7525 | -0.1933 | $0.127^{*}$ |  |
| C2 | $0.2797(3)$ | $0.8529(3)$ | $-0.0463(4)$ | $0.0574(13)$ |  |
| C3 | $0.1740(4)$ | $0.7751(2)$ | $-0.0325(3)$ | $0.0514(12)$ |  |
| H3 | 0.1677 | 0.7076 | -0.0843 | $0.062^{*}$ |  |
| N1 | $0.0778(3)$ | $0.7981(2)$ | $0.0587(3)$ | $0.0464(9)$ |  |
| C4 | $0.0872(3)$ | $0.8990(2)$ | $0.1361(4)$ | $0.0539(12)$ |  |
| H4 | 0.0228 | 0.9144 | 0.1971 | $0.065^{*}$ |  |
| C5 | $0.1929(4)$ | $0.9768(2)$ | $0.1222(4)$ | $0.0705(16)$ |  |
| H5 | 0.1992 | 1.0442 | 0.1740 | $0.085^{*}$ |  |
| C6 | $0.2891(4)$ | $0.9537(3)$ | $0.0310(5)$ | $0.0703(16)$ |  |
| H6 | 0.3599 | 1.0057 | 0.0218 | $0.084^{*}$ |  |
| C7 | $-0.2726(5)$ | $0.7996(4)$ | $0.2481(5)$ | $0.0447(11)$ |  |
| C8 | $-0.0191(5)$ | $0.5420(3)$ | $0.0191(5)$ | $0.0479(10)$ | 0.50 |
| C9 | $-0.4653(6)$ | $0.9731(5)$ | $0.4697(6)$ | $0.0674(14)$ | 0.50 |
| Cu1 | $-0.07682(7)$ | $0.68136(4)$ | $0.07839(7)$ | $0.0473(2)$ |  |
| Cu2 | $-0.35513(8)$ | $0.88478(6)$ | $0.37450(8)$ | $0.0680(3)$ |  |
| N2 | $-0.2093(5)$ | $0.7508(4)$ | $0.1768(5)$ | $0.0576(11)$ | 0.50 |
| N3 | $-0.0191(5)$ | $0.5420(3)$ | $0.0191(5)$ | $0.0479(10)$ | 0.50 |
| N4 | $-0.4653(6)$ | $0.9731(5)$ | $0.4697(6)$ | $0.0674(14)$ |  |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C 1 | $0.069(4)$ | $0.102(5)$ | $0.097(5)$ | $-0.027(4)$ | $0.045(4)$ | $-0.012(4)$ |
| C 2 | $0.052(3)$ | $0.061(3)$ | $0.058(3)$ | $-0.013(3)$ | $0.012(3)$ | $-0.001(3)$ |
| C 3 | $0.057(3)$ | $0.051(3)$ | $0.050(3)$ | $-0.010(2)$ | $0.020(2)$ | $-0.008(2)$ |
| N 1 | $0.056(2)$ | $0.040(2)$ | $0.047(2)$ | $-0.0042(18)$ | $0.0218(18)$ | $-0.0066(17)$ |
| C 4 | $0.066(3)$ | $0.040(3)$ | $0.052(3)$ | $0.010(2)$ | $0.012(2)$ | $-0.004(2)$ |
| C 5 | $0.071(4)$ | $0.043(3)$ | $0.089(4)$ | $-0.005(3)$ | $0.008(3)$ | $-0.015(3)$ |
| C 6 | $0.066(4)$ | $0.046(3)$ | $0.093(4)$ | $-0.017(3)$ | $0.011(3)$ | $0.000(3)$ |
| C 7 | $0.052(3)$ | $0.038(3)$ | $0.050(2)$ | $0.0047(19)$ | $0.025(2)$ | $-0.0047(19)$ |
| C 8 | $0.059(3)$ | $0.038(2)$ | $0.057(2)$ | $0.0056(19)$ | $0.034(2)$ | $-0.0012(19)$ |
| C 9 | $0.073(3)$ | $0.069(3)$ | $0.066(3)$ | $0.026(3)$ | $0.029(3)$ | $-0.009(3)$ |
| Cu 1 | $0.0561(4)$ | $0.0377(4)$ | $0.0583(4)$ | $0.0040(2)$ | $0.0328(3)$ | $-0.0070(2)$ |


| Cu 2 | $0.0727(5)$ | $0.0675(5)$ | $0.0772(5)$ | $0.0212(4)$ | $0.0429(4)$ | $-0.0155(4)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N 2 | $0.067(3)$ | $0.050(3)$ | $0.068(3)$ | $0.007(2)$ | $0.038(2)$ | $-0.008(2)$ |
| N 3 | $0.059(3)$ | $0.038(2)$ | $0.057(2)$ | $0.0056(19)$ | $0.034(2)$ | $-0.0012(19)$ |
| N 4 | $0.073(3)$ | $0.069(3)$ | $0.066(3)$ | $0.026(3)$ | $0.029(3)$ | $-0.009(3)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| C1-C2 | 1.493 (6) | C5-H5 | 0.9300 |
| :---: | :---: | :---: | :---: |
| C1-H1A | 0.9600 | C6-H6 | 0.9300 |
| C1-H1B | 0.9600 | C7-N2 | 1.140 (5) |
| C1-H1C | 0.9600 | C7- Cu 2 | 1.839 (4) |
| C2-C3 | 1.3900 | $\mathrm{C} 8-\mathrm{N} 3{ }^{\text {i }}$ | 1.158 (8) |
| C2-C6 | 1.3900 | C8-C8 ${ }^{\text {i }}$ | 1.158 (8) |
| C3-N1 | 1.3900 | C8-Cu1 | 1.886 (4) |
| C3-H3 | 0.9300 | $\mathrm{C} 9-\mathrm{N} 4{ }^{\text {ii }}$ | 1.150 (9) |
| N1-C4 | 1.3900 | C9-C9 ${ }^{\text {ii }}$ | 1.150 (9) |
| N1-Cu1 | 2.057 (2) | C9-Cu2 | 1.838 (5) |
| C4-C5 | 1.3900 | $\mathrm{Cu} 1-\mathrm{N} 2$ | 1.891 (4) |
| C4-H4 | 0.9300 | $\mathrm{Cu}-\mathrm{Cu} 2{ }^{\text {iii }}$ | 2.8364 (10) |
| C5-C6 | 1.3900 | $\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {iv }}$ | 2.8364 (10) |
| C2-C1-H1A | 109.5 | C5-C6-C2 | 120.0 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | C5-C6-H6 | 120.0 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | C2-C6-H6 | 120.0 |
| C2- $21-\mathrm{H1C}$ | 109.5 | N2-C7-Cu2 | 173.8 (5) |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{Cl}-\mathrm{H1C}$ | 109.5 | $\mathrm{N} 3{ }^{\mathrm{i}}-\mathrm{C} 8-\mathrm{C} 8^{\text {i }}$ | 0.0 (5) |
| H1B-C1-H1C | 109.5 | N3 ${ }^{\text {i}}-\mathrm{C} 8-\mathrm{Cu} 1$ | 178.1 (5) |
| C3-C2-C6 | 120.0 | C8 ${ }^{\text {i }}$ - $88-\mathrm{Cu} 1$ | 178.1 (5) |
| C3-C2-C1 | 117.6 (3) | $\mathrm{N} 4{ }^{\text {iii }} \mathrm{C} 9-\mathrm{C} 9^{\text {ii }}$ | 0.0 (5) |
| C6- $22-\mathrm{C} 1$ | 122.4 (3) | $\mathrm{N} 4{ }^{\mathrm{ii}}-\mathrm{C} 9-\mathrm{Cu} 2$ | 178.9 (8) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ | 120.0 | C9 ${ }^{\text {ii }}-\mathrm{C} 9-\mathrm{Cu} 2$ | 178.9 (8) |
| C2-C3-H3 | 120.0 | C8-Cu1-N2 | 142.80 (19) |
| N1-C3-H3 | 120.0 | $\mathrm{C} 8-\mathrm{Cu} 1-\mathrm{N} 1$ | 109.28 (15) |
| C4-N1-C3 | 120.0 | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$ | 107.10 (16) |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cu} 1$ | 120.73 (15) | $\mathrm{C} 8-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {iii }}$ | 81.38 (15) |
| C3-N1-Cu1 | 119.27 (15) | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {iii }}$ | 79.83 (14) |
| N1-C4-C5 | 120.0 | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {iii }}$ | 132.57 (9) |
| N1-C4-H4 | 120.0 | C9-Cu2-C7 | 169.9 (2) |
| C5-C4-H4 | 120.0 | C9-Cu2-Cu1 ${ }^{\text {iv }}$ | 113.40 (17) |
| C6-C5-C4 | 120.0 | $\mathrm{C} 7-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {iv }}$ | 76.72 (15) |
| C6-C5-H5 | 120.0 | C7-N2-Cu1 | 170.8 (5) |
| C4-C5-H5 | 120.0 |  |  |

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x-1,-y+2,-z+1$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $x,-y+3 / 2, z+1 / 2$.

## sup-4

Fig. 1



[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2324).

